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Trailing-edge stall 
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A study is made of the laminar flow in the neighbourhood of the trailing edge of 
an aerofoil at incidence. The aerofoil is replaced by a flat plate on the assumption 
that leading-edge stall has not taken place. It is shown that the critical order of 
magnitude of the angle of incidence a* for the occurrence of separation on one 
side of the plate is a* = O(R-A), where R is a representative Reynolds number, 
for incompressible flow, and a* = O(R-*) for supersonic flow. The structure of 
the flow is determined by the incompressible boundary-layer equations but with 
unconventional boundary conditions. The complete solution of these funda- 
mental equations requires a numerical investigation of considerable complexity 
which has not been undertaken. The only solutions available are asymptotic 
solutions valid at  distances from the trailing edge that are large in terms of the 
scaled variable of order R-8, and a linearized solution for the boundary layer over 
the plate which gives the antisymmetric properties of the aerofoil at  incidence. 
The value of a* for which separation occurs is the trailing-edge stall angle and an 
estimate is obtained from the asymptotic solutions. The linearized solution yields 
an estimate for the viscous correction to the circulation determined by the Kutta 
condition. 

1. Introduction 
The flow near the trailing edge of a flat plate aligned with a uniform stream in 

an incompressible viscous fluid has recently been studied by both Stewartson 
(1969) and Messiter (1969). Both authors showed that when the Reynolds 
number R is large the flow in the neighbourhood of the trailing edge of the plate 
has a complicated three-layer or triple-deck structure. This triple deck is similar 
to that encountered by Stewartson & Williams (1969) in their investigation of the 
self-induced separation of supersonic flow. In the sublayer, of thickness O(R-Q), 
the appropriate equations are the incompressible boundary-layer equations but 
with boundary conditions involving a match with the main deck, which is 
essentially inviscid; additionally, in the trailing-edge problem, matching is neces- 
sary both with the Blasius (1908) solution upstream and the Goldstein (1930) 
wake solution downstream. The numerical solution of the sublayer equations 
successfully carried out by Stewartson & Williams (1969) was aided by the fact 
that the upper-deck equation in the supersonic case is the wave equation rather 
than the potential equation. This leads to a slightly simplified outer boundary 
condition in the lower deck. 
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The cause of this triple deck in the trailing-edge problem is the change in 
boundary condition a t  the trailing edge 0 from zero tangential velocity to zeio 
stress on the line of symmetry. The effect of the triple deck is to induce a favour- 
able pressure gradient upstream of 0. The transition of the solution through 0 is 
achieved by the Rott & Hakkinen (1  965) similarity solution. Downstream of the 
trailing edge the pressure increases, slightly overshooting its main-stream value 
before tending to it from above. 

The present paper extends the work of Stewartson (1969) to the case when the 
plate is at  a small angle of incidence to the oncoming stream. The purpose of the 
study is to estimate the circulation around a two-dimensional aerofoil at inci- 
dence when the effect of viscosity is taken into account. When the viscosity is 
zero this is determined by the Kutta condition. We also aim to elucidate some of 
the phenomena of trailing-edge stall. We make the assumption that the ratio of 
the thickness of the aerofoil to the angle of incidence is large enough for the fluid 
not to separate at  the leading edge, and that the flow remains attached over the 
forward part of the body. Thus the boundary layer approaches the trailing edge 
in an adverse pressure gradient on the upper side of the aerofoil, though the 
incidence induces a favourable pressure gradient on the lower side. Within a 
distance O(R-3) of 0 the effect of the triple deck, discussed above for the sym- 
metrically disposed plate, makes itself felt. The boundary layer on the upper side 
of the aerofoil thus experiences a favourable pressure gradient which tends to 
counteract the adverse gradient due to the incidence. If the angle of incidence is 
large the flow separates before it is influenced by the triple deck, and if the angle 
is too small the effect of the triple deck outweighs that of the incidence and the 
boundary layer remains attached right to the trailing edge, If, however, the 
angle of incidence a* is O(R-$) the two effects are comparable, and we postulate 
the existence of a critical angle R - h s  at which trailing-edge stall is liable to 
occur since the flow just separates on the upper side of the aerofoil. 

In order to bring out the essential features of the trailing-edge problem 
unencumbered by complicated geometry, we replace the aerofoil by a flat plate 
at  incidence in a uniform stream. This simplifies the main-stream velocity, and 
justification for the replacement is discussed in $2.  The flow upstream of the 
trailing edge is then the Blasius flow plus a perturbation that is O(a*). At this 
stage the flow on the lower side of the plate is obtained from that on the upper 
side by changing the sign of a*. These two boundary layers then separately enter 
the triple deck which is centred on 0 and of thickness O ( R 4 ) .  The equations that 
then hold in the lower deck have more complicated boundary conditions than in 
the case of the symmetrically disposed plate, as the unknown functions that 
appear in them are no longer the same on both sides of the plate. At 0 the 
boundary condition of zero velocity on the plate is abandoned and instead the 
pressure must be continuous across the wake. Downstream the solution must 
finalIy become that of the Goldstein wake though with the centre line displaced, 
The equations for the fundamental problem of the lower deck are set up, though 
a full numerical solution has not yet been undertaken. However, it is shown that 
the partial differential equations have the correct asymptotic behaviour both 
upstream, where they match with the perturbed Blasius solution, and 
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downstream where they match with the modified Goldstein wake mentioned 
above. In  this asymmetric problem the transition through the trailing edge 
itself is achieved by an extension of the Rott & Hakkinen (1965) solution for 
the symmetrically disposed plate. 

Although the complete solution remains to be computed for the plate at both 
zero and non-zero incidence, the asymmetry of the flow about the aerofoil at 
incidence enables some of the features of the flow to be deduced from a linearized 
solution of the equation. Upstream of the trailing edge it is reasonable to linearize 
about the linear shear with which the streamwise velocity must match at  the 
outer edge of the lower deck. A solution of the resulting equation for the difference 
in the streamwise velocity components on the top and bottom of the plate is then 
obtainable by Wiener-Hopf arguments without the need to solve for the 
boundary layer in the wake. This equation involves the anti-symmetric part of 
the unknown pressure which must vanish downstream of the trailing edge. The 
resulting solution, whose asymptotic form is correct both upstream and down- 
stream of 0, is consistent with the predicted behaviour of the solution of the full 
non-linear equations and leads to an estimate of the viscosity correction to the 
circulation given by the Kutta condition. 

The final section of the paper describes the modifications required if the fluid 
is compressible. If the flow is subsonic the incompressible results carry over with 
a scaling involving the Mach number and temperature at  infinity. If it is super- 
sonic the critical angle of incidence for separation and trailing-edge stall to occur 
is a* = O(R-t). In this case the boundary conditions for the lower-deck problem 
are similar to those of Stewartson & Williams (1969). 

2. The exterior inviscid flow 
Consider a two-dimensional aerofoil of length 1 with a sharp trailing edge in an 

infinite incompressible fluid of density p and kinematic viscosity v. At infinity the 
velocity of the fluid is uniform and of magnitude U,, and the aerofoil, which is 
without camber, is fixed at an angle a* to the direction of the undisturbed stream. 
The design of the aerofoil is such that the flow over it is smooth and attached 
except possibly in the immediate neighbourhood of the trailing edge. For leading- 
edge separation to be avoided it is necessary to have the thickness ratio T of the 
body very much greater than the angle of attack. If T = O(a*),  so that the two 
quantities are of the same order, the initial stagnation point is followed by a 
region of rapid pressure fall on one side of the aerofoil and then by a region 
of adverse pressure gradient which can provoke separation and long or short 
bubbles of reversed flow. Here we wish to exclude this phenomenon so that 
we can concentrate on trailing-edge stall and so we take r B a*. However, we 
wish to keep the external inviscid flow as simple as possible and consequently it 
would be convenient to replace the aerofoil by a flat plate at incidence a* since 
this is sufficient to bring out the essential features of the trailing-edge flow. Since 
trailing-edge stall is estimated to occur when a* = O(R*-), consideration of this 
simpler geometry may formally be justified if we suppose, for example, that the 
aerofoil has thickness ratio T = O(R*) in which case leading-edge separation 
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will not occur. Here R = U, 11. is the Reynolds number and is taken to be large, 
though the flow is assumed to remain laminar and steady throughout. The effect 
of a non-zero trailing-edge angle /3* is of secondary importance if /?* is sufficiently 
small since, as shown by Riley & Stewartson (1969), the flow does not separate 
over a symmetrically-disposed wedge if /3* < R-4. A similar situation occurs for 
a cusped trailing edge. We take p* << R-f ,  so that the effect of the trailing-edge 
angle is negligible compared with that of the incidence. Although we shall con- 
centrate on a flat plate from now on, our results may easily be generalized to 
include aerofoils of thickness ratio r = O( 1) .  The only modification necessary is 
to the external inviscid flow, which in the neighbourhood of the trailing edge has 
the same structure as for a flat plate. 

The plate is taken to occupy the strip - 1  < x* < 0 of the x* axis with the 
origin of co-ordinates at the trailing edge. The velocity components in the x*, y* 
directions are u*, v* respectively and a t  an infinite distance upstream, i.e. as 
x* --f - GO, we have, making use of the assumption that a* < 1, 

u* -+ u,, v* -+ u, a*. (2.1) 

Since leading-edge separation has not occurred, and the Reynolds number is 
large, it is legitimate to expect that the flow is inviscid almost everywhere, the 
exceptions being the neighbourhood of the flat plate and the wake extending 
downstream from the trailing edge. The inviscid solution outside these regions 
is well-known and has the properties that on the flat plate (y* = 0, - 1 < x* < 0) 

and on the wake centre line (y* = 0, x* > 0 )  

(2.2) 

(2.3) 

where B is a constant to be determined. 
The constant B is usually determined by the Kutta condition applied at  the 

trailing edge. An interpretation of this condition, which implies B = 0, is that 
a stagnation point on the upper side of the plate near the trailing edge is to  be 
excluded. If such a stagnation point occurs it is argued that the boundary layer 
must separate further upstream on that side of the plate. The lift coefficient 
derived from (2.2) is 

(2.4) c, = 27ra" (1 +), 
and if B = 0 it is broadly in line with experiment for small a*. However, the 
inviscid theory, in conjunction with the Kutta condition, does not explain why, 
at some value ofa*, usually between 5" and 15", catastrophic stall, nevertheless, 
sets in. The contribution to the theoretical explanation of the observed flow 
properties to be made here may be summarized as follows. First, if a* is SUB- 
ciently small no separation occurs. The reason for this is that the change in 
character of the boundary layer as the trailing edge is approached induces a 
favourable pressure gradient which dominates the adverse pressure gradient 
implied by (2.2). Secondly, when a* is of a critical order of magnitude, in fact 
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when a* = O(R*), the boundary layer associated with the main stream ( 2 . 2 )  
must always separate before x* = 0. Stall begins, therefore, when a* is large 
enough to cause the boundary layer to separate before the induced favourable 
pressure gradient is able to make its impact. In  these circumstances it emerges 
tha.t the constant B = O(R-&) which results in a stagnation point of the inviscid 
flow at a distance -x*l l= O(R-k) upstream of the trailing edge. In order to 
quantify this argument we now consider the boundary layer corresponding to 
the main stream (2.2). 

3. The perturbed Blasius flow 
Apart from the immediate neighbourhood of the leading and trailing edges 

the velocity of slip implied by (2.2) is virtually uniform. For the reasons outlined 
in the previous section the singularity in ( 2 . 2 )  at x* = -1, the leading edge of the 
plate, is ignored, and on the upper side of the plate, to which we shall restrict 
attention in this section, we replace the main-stream velocity by U,(x*) where 

U,(X*) = u, + U,a*( -x*/zp. (3.1) 
Thus we have simplified the slip velocity and set B = 0. The f is t  modification 
leads to an error in both the slip velocity and its derivative that is small over the 
whole of the plate, except for the leading edge, and therefore will not make a 
significant contribution to the theory below. The second modification anticipates 
that B = O(R-$1) and may be justified aposteriori. We note, however, that even 
if B = O(Z) the main properties of the perturbed Blasius flow can easily be 
inferred from the discussion when B = 0. 

We define the parameter e by 

e-5 = R = U,l/v, (3.2) 

t = 1 +x*li, 5 = y* /1E4 ,  = u*lum, v = v*iu,c4, (3.3) 

and introduce the non-dimensional variables 

in terms of which the boundary-layer equations appropriate to the main stream 

These equations are to be solved subject to the boundary conditions 

and if a* = 0 the solution is u = fi({) where t: = jj/@ and fB({) is the Blasius 
function withf,(O) =fg(O) = 0, fg(0)  = h = 0.3321. When a* is small but non- 
zero we seek a perturbation to the Blasius solution in the manner described by 
Riley & Stewartson (1969) in their analogous investigation in the case of a wedge. 

Z L = V = O  on ij= 0; u-t1+a*(l-LJfr as g+co, (3.5) 

We &rite m 

=fi;(t:)+a* c tm+lf ;L(~)+o(a*~)  
n=O 

in (3.3), and the equation satisfied by the functionfA(5) is 
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with boundary conditions 
(n - i)! 

fn(0) = fA(0)  = 0, fA(cO) = - 2n3(n+ l ) ! .  (3.8) 

Since we are interested in the singular behaviour of the solution (3.6) as f[-> 1, 
the trailing edge of the plate, we examine the functions fnfor large values of n by 
writing 

The equation for an is exactly that considered by Riley & Stewartson (1969) and 
in the same wav it follows that 

2 r w x )  = @A) +o( l ) .  (3.9) 

if 5 = O ( l ) ,  but if cis small so that n*[ = O(l),  then 

(3.10) 

(3.11) 

since (3.10) does not satisfy the boundary condition a t  the wall. Here Ai is the 
Airy function. 

Thus, near f [  = 1,  ( -$)!  m en 
u w f&) -a* --__- faY) c --x 

n, lne  
(3.12) 

for any fixed y > 0, while the skin friction must be calculated from the expression 

(3.1 3) 

Since the terms in the series in (3.12), (3.13) were deduced from the properties of 
(3.7) for large n only, these solutions may be augmented by any term O(a*) 
having an expansion in powers of 6 which, when 6 = 1, converges more rapidly 
than the term given. It follows from (3.12) that, near 6 = 1, 

64( -$)! = f A Y )  +a* (g*(Y) + 7 (1 - f[)*faa,) , (3.14) 

where the singular part of g*(jj) as v+ 0 is obtained by letting f [  -+ 1 in the expres- 
sion for 2 t  in (3.13). Thus for small we have 

(3.15) 

In  (3.14) the error in replacingfL(5) byf,&j) is O(l- f [ ) ,  and the term in a* is in 
error by powers of 1 - 6 higher than (1 - E)*. 

The behaviour of g*@) for small ij is most easily found by consideration of the 
shear stress which may be deduced from (3.13). It is proportional to where 

(3.16) 

to which may be added any term O(a*) which when = 0 and f [  = 1 diverges 

less strongly than C r z .  Investigation of (3.16) reveals that the double limiting 

process ij --f 0 , 6  --f 1 is non-commutative. If we let ij+ 0 first we obtain 

m 

n=l 

(3.17) 
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where the Airy function has been replaced by an integral representation. In order 
to investigate the behaviour of (3.18) as ?j-+ 0 we consider the summation which 
is the real part of the integral 

(3.19) 

since the interchange of summation and integration may be justified. The series 
in (3.19) converges for a'll i j  > 0, and because 

exp (injB) = 1: expi:@) (3.20) c d t + 0 ( 1 )  as B+O+ 
n=l  n8 

it follows that, for small 8, 

j(Y) = 
Hence finally, for small jj, 

so that g*(?j) differs from - 

(3.21) 

(3.22) 

(3.23) 

by a constant as j j - t  0 and has a singular derivative at  i j  = 0. 
It is at  this stage that we first have confirmation of the prediction of $ 2  

regarding the order of magnitude of a". We know (Stewartson 1969, to which we 
hereafter refer as I) that if a* = 0 the Blasius flow breaks down when 1 - 6 = O(e3) 
since the trailing edge induces a favourable pressure gradient. If the adverse 
pressure gradient caused by the incidence is to be comparable, we see from (3.17) 
that a* = O ( d ) .  This is also consistent with (3.22) since within a distance O(e3).  
of the trailing edge the appropriate scale for jj in the immediate neighbour- 
hood of the wall is 

The following section describes the modification to the trailing-edge triple 
deck of I to accommodate the singular behaviour of au/@ as demonstrated in 
(3.17), (3.22) in the respective limits i j + O  for fixed 6 + 1 and C+ 1 for fixed 
jj > 0. It will emerge, as is indicated by (3.13), that the appropriate combination 
of co-ordinates in the neighbourhood of the wall is jj/( 1 - E)* ,  a variable that 
remains O( 1 j in the scaled co-ordinates of the lower deck. 

= O ( E ) .  

4. The trailing-edge triple deck for y* > 0 

Even if a* = 0 and the Blasius flow is maintained over - 1  < x* < 0, it has 
already been shown in I that it must break down within a distance O(e31) of the 
trailing edge. Also as z* -+ 0 - the work of the previous section already shows 
that the boundary layer is taking on the familiar properties of the lower and 
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main decks, of thicknesses O(&) and O(e4Z) respectively. Further, the normal 
velocity associated with the main deck is seen from (3.14) to  be 

O(U,a*s4( -x*/z)-g) (4.1) 

and is of the same order as the term O(a*) in the slip velocity (3.1) when 
-x* = O(e3Z). Now, as demonstrated in I, the increase in slip velocity induced 
by the change in boundary condition a t  y" = 0 when x* changes sign is O(e2Um) 
which is comparable with (4.1) in the triple deck if a* = O(s4). For larger values 
of a* separation occurs for -x* % s3Z on the upper side of the plate, and for 
smaller values of a* the effect of the incidence is negligible in comparison with 
the trailing-edge effect. Accordingly, interest centres on values of a* such that 
a = O(1) where 

where h = fg(0) = 0.3321 and is introduced here merely to simplify the funda- 
mental equation (3.14). 

In  setting up the triple deck the arguments given in Stewartson & Williams 
( 1  969) and in I are used extensively. The main modifications necessary are to the 
boundary conditions which depend on §$2, 3. Otherwise the structure is taken 
over, with notation, from I. We write 

a* = €ahfa, (4.2) 

P = e3~-21x, = e 4 ~ - 8 i y ,  u* = umu, v* = u , A ~ ,  
p" = pm+pU2,A*p, (4.3) 

where u, v,  p are functions of x ,  y. Then in the main deck x = 0(1), y = O( 1) and 
we set up the following formal expansions for u, v, p :  

u(z,y) = U,(y) +e:u&(y) +ElogEU11(y) +EU& y) + ... : 

P ( X , Y )  = eZp2(x, y) + . . * . 

(4.4 a)  

v (x , y )  = e2v1(z, y) $- . . . . (4.4b) 

(4.4 c) 

Here U,(y) = f&) and is the velocity profile a t  x* = 0 as given by the Blasius 
solution. The function u+(y) is a constant multiple of g4(Tj) as introduced in (3.14), 
and results from formally letting x* tend to  zero in the perturbation of order €4 
caused by the pressure variation of the same order. This term and the term 
O(s1oge) are the only ones that differ from I (equation (3.1)). The presence of the 
latter is indicated by the form taken by the solution at  the outer edge of the 
inner deck, and reference to  it is made again in $ 5 .  Neither, however, makes 
a contribution to  ul(x ,  y) since both are functions of y alone. The boundary condi- 
tions satisfied by ul, vl,  p 2  upstream of the triple-deck region are obtained from 
the part of the perturbation Blasius solution of $ 3  that  has a singular derivative 
as x*+ 0 - . The relevant matching is provided by (3.14) and we have 

as x-+-cc with y = O(1). On substituting (4.4) into the full Navier-Stokes 
equations and equating the coeficients of the leading powers of e to zero we 
obtain 

duo 
dY 

UI(x.?/) = Al(X)-, v l (x : ,y )  = -A;(x) uo(?/), P ~ ( x > Y )  = poz(~ ,O) ,  (4.6) 
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as in I (equations (3 .6)  and (3.8)), where A,(x) is a function of x to be determined. 
One equation connecting p 2  and A, follows from the upper deck in which 
y* = O(e3Z) and in which the governing equations are essentially inviscid. To 
obtain this relation we introduce a new variable 

Y = sh8y = h%y*/le3, (4.7) 
and write 

u = 1 + €2U2(X, Y )  + ..., v = € 2 K ( X ,  Y )  + . . ., p = €2P2(X, Y )  + . . ., (4.8) 

where the dots denote higher powers of E .  Then it may easily be shown that 
P2 + iV, is a function of x + i Y only and that 

P,(X, 0) = p2@, O ) ,  v,(x, 0) = -A;(%). (4.9) 

In  I it was straightforward to express p 2  in terms of A; by means of a Hilbert 
integral but there is a slight complication here as p,(x, 0) - -a( -x)3h-Q as 
x -+ - 00 and A;(x)  N axtA-* as x -+ + co so that formally the Hilbert integrals do 
not converge. However the difficulty can be overcome by using Hadamard’s 
notion of the finite part of the infinite integral and then we have 

(4.10) 

where 9 means that the finite part only is to be taken and that the integral is 
a Cauchy principal value. An alternative form is 

1 0 A;(x’)dd + ‘Jm [A;(x’) - ahtz ‘q  s dx’ , 
7r -m 2--5’ 77 0 X - X ’  

p2(x,0) =- ( - -5)4H(-x)+- 
-a  
hB 

(4.11) 
where H is Heaviside’s step function. 

Turning now to the lower deck of thickness O(e5Z) we write 

= hiylc: = ~ 2 ~ * / 1 c : 5  ( 4 . 1 2 ~ )  

and u = E ~ ~ Z , ( X , Z ) +  ..., v = E ’ ~ Q ~ , ( X , Z ) +  ..., p = e2j5,(x)+ ..., (4.12b) 

where F2(x) = hip,(x, 0). Then Q,, fi, satisfy 

(4.13) 

with boundary conditions for x < 0, 

(4.14) 
c1 = o = 6, if x = 0, iil-z-+A,(x) as 

i i l - z+O as x+--oc), 
where Al (x )  = hiA,(x). 

No boundary conditions have so far been given for (4.13) in x > 0 and before 
setting these out it is convenient to go through the analogous argument for the 
region y* c 0. The only difference in the key equations (4.11), (4.13), (4.14) is 
that the sign of the term corresponding to A,(x) changes while the term corre- 
sponding to p2(x ,  0) remains unaltered. Of course since we are dealing with an 
asymmetric problem the two boundary layers must be solved separately and no 
simple connecting relations can be expected. If we denote the value of j5,(x) by 
f iT(x) when y* > 0 and by fin(x) when y* < 0 with a corresponding notation-for 
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d T ( x )  and AB(x) the fundamental problem of the triple deck for a lifting flat 
plate can be stated as follows. 

Solve (4.13) with 

subject to the following boundary conditions: 

,k,+IzI as r- t -m; (4.15b) 

Q1 = 0 = ijl at z = 0, ( 4 . 1 5 ~ )  

Q,- z+AT(-2) as z++co, ~,+z+-A,(z) as z+-m; 

Q,, i j ,  are smooth for all z if x > 0; 

x i 0, while aiZ/az is discontinuous; 

(4.15 d )  

pT(x) = p,(x) if x > 0. (4.15e) 

Finally @,+a(-x)B+~, ~ B ( x ) - ~ ( - x ) ~ + O  as x+-m. (4.15.f 1 
In  the wake region a simple Galilean transformation can be made which, while 

not perhaps reducing the formidable numerical problem presented by (4.13), 
(4.15), makes it easier to see how to proceed and to understand the structure of 

(4.16) the solution. In x > 0 we write z" = - 8(x) ,  

where O(x) is an arbitrary function of x, regard Gl as a function of x,  z", and replace 
G1 by ij,+8'(x)iZl. Then (4.13) is unaltered but the boundary conditioiis in x > 0 
reduce to 

61- 121 +&[AT(x)-aB(x)] 

+ ( 9 [ ~ T ( X ) f d B ( x ) ] + 6 ' ( X ) } s g n z "  as Iz"] +m. (4.17) 

One possible choice for 8(z) is - i(m, +A,) which simplifies (4.17) but, with an 
iterative method 8s outlined below, it is undesirable to move the origin. Hence 

8(0) = 0, 8' = - ;(A;+A;) (d > O ) ,  (4.18) we shall choose 

SO that Cl - 121 i- $[By(X) -AB(x)] 

++{AT(o)+AB(0))sgn~ as 121 +a. (4.19) 

The numerical integration might now proceed as follows. Guess A,, A, in x < 0 
and AT-AB in x > 0. Using ( 4 . 1 5 ~ ~ )  determine fiT, PB in x < 0 and 17, in x > 0 
together with the values of A; +A; which make f l T  = jjB in x > 0. Then 8(x) is 
determined from (4.18). Now integrate (4.13) with these values of p 2  and 6' to 
deduce new values of .AT, X B  in x < 0 and of 2, - dB in x > 0. Hopefully this 
iterative procedure will converge to the required solution of the fundamental 
problem. Alternatively (4.15a) can be used in reverse, i.e. begin with fi2 and 
deduce A;, from ( 4 . 1 5 ~ ) .  Then AT, .AB follow by integration, the additive 
constant being determined from the known properties of d when x is large and 
negative. The last step in the cycle is to  use (4.13) to compute 17,. 
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5. The structure of the lower deck 

(a)  1x1 9 1, 5 < 0 
The elucidation of the structure of the solution of (4.13) subject to (4.14), (4.15) 
cannot proceed straightforwardly, even on an intuitive basis, because the 
behaviour of the pressures I J ,  and I J B  depends on the overall properties of d, 
and AB. However we can expect that Q(P, - @B), the anti-symmetric part of P2, 
which is zero when x > 0 and is derived from a complex function of x + i Y, has 
an asymptotic expansion for large negative x containing terms of the form 
a,( - x)*-” with n = 0,1,2, . . . . For n 2 1 the coefficients alL depend on the overall 
values of A(x) while a, = -a. Further, ;(PT + f i B ) ,  the symmetric part of @,, is, 
when x is large and negative, mainly forced by the wake growth at  large positive 
values of 2. This would imply, from I (equation (5.14)), that it  has an asymptotic 
expansion which starts with - 1.7840/3%( -x)*. The dependence of the sym- 
metric part of 17, on overall properties of B results in multipole solutions giving 
terms like ( -x)-, for integral n. Otherwise the various terms arise from the 
properties of A(x) when 1x1 is large which depend in turn on the properties of @, 
and the eigensolutions of (4.13). Finally, logarithmic terms may arise through 
a confluence of forced terms and eigensolutions. On the basis of this general 
argument we therefore assume that 

aa 1.7840 
IJT(X) = - a ( - z ) & + L - -  +O((  -x)-i), 

( -x)& 39( -x)3 

when x is large and negative and verify aposteriori that it is a consistent assump- 
tion. The constant a, is related to the unknown circulation term B of (2.2) by 

B = ~ Y h - b , ,  ( 5 . 2 )  

and in 4 6 an estimate of its value is made. 

for the region z > 0 of the lower deck can be obtained in the form 
Following the argument of 0 5 in I we now assume that the solution of (4.13) 

.ii, = z+a( -.)+HH;(~) + a 2 ~ ; ; ( r ) + a 3 ( - z ) - ) ~ ~ ( r ) + o ( ( - ~ ) - ~ )  (5.3) 

when x is large and negative. Here 

7 = 2/3 12xp, (5.4) 

and the Hk(r )  are functions of 7 satisfying the boundary conditions 

H,(o) = H;(o)  = 0, H : ( ~ ) + o  as r+m,  (5.5) 

and the differential equations 

H,” - 1Sq2HL + 9(4 - n) (yH;  - = hn(r) .  (5.6) 

Each h,(r) depends on the previous Hm(v) ,  1 < m < n- 1, and 

h,(r) = 9.2-*, h2(7) = 3 .  2-*(3H,H’; - H i 2 ) .  (5.7) 

The second and third terms of (5.1) do not affect the expansion (5.3) until we 
reach H,(r) ,  B8(r). The complementary functions of (5.6) are either exponentially 
large as ?-+a, which is inadmissible, or linear, or, except for n = 1,2,  are such 
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that their first derivative vanishes at infinity. If n = 1 one complementary 
function is O(@) as 7+00 and indeed we find that, on solving (5.6) analytically 

as 7 + m. Also 
( -$) !  2 

H;(O) = 33 ~ [ I  ( -*) !  ' 

and this gives a contribution to the skin friction that exactly matches with the 
corresponding term in (3.17). The first term of (5.8) matches with the second 
term of (4.4a) as forecast in the discussion of $ 3 .  We note that this term is 
independent of x and so persists as x --f + m and must appear in the expansion 
ofii, about x = 00. The second term of (5.8) gives a leading term in the asymptotic 
expansion of d(x)  so that 

A",(x) z a6f( -*)! ( -x)k .  (5.10) 

The same term leads the asymptotic expansion of AB(x), and it follows from 
( 4 . 1 5 ~ )  that (5.10) makes a contribution to  p,(x) which is O((-x)-g)  and 
accounts for the last term of (5.1). 

One complementary function of the equation for H2(7) is such that 

HH(7) - log7 as T-fCf3, 

and this presumably matches with the third term of ( 4 . 4 ~ ) .  This third term is 
O(1og y) as y --f 0 and hence must be matched all the way along the lower deck 
even as x+ + 00. The contribution to d,(x) arising from Hk(7) is a constant plus 
a term proportional to  log 1x1, and gives a term in $,(x) which is proportional to 

Thus, from conditions when x is large and negative, it would seem that the 
expansion (5.3) is the correct one: we shall confirm below that it is also consistent 
with the expansion as x+ +ax Through the kind offices of Dr N. Riley the first 
four equations of (5.7) were integrated numerically with the same basic program 
as was used to calculate the corresponding functions in Riley & Stewartson (1969) 
and it was found that 

x-llog (21. 

""1/ = 1-2.1539a-0.8940~2-  1*2256u3-2*2452u4- ..., (5.11) 

where cr = a/(  -z)*. I n  order to  have a smooth solution it seems important to 
prevent separation occurring in the lower deck. It is clear from (5.1) that as 
x increases from - 00 the pressure initially increases and so separation is a possi- 
bility. On the other hand the presence of the third term of (5.1) shows that the 
wake part of the lower deck provides a favourable pressure gradient which, 
although weak a t  large negative x, may well be enough to prevent separation 
i f a  is not too large. Certainly no separation occurs if cy. = 0, and it is a reasonable 
hypothesis, in view of the existence of this term, to postulate the existence of an 
a, such that if a < a, there is no separation and the triple-deck structure assumed 
here is correct, while if a > a, separation occurs and with i t  a t  least the partial 
collapse of the structure we have set up. We also postulate that a, is associated 

a x  p = o  
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with stall and define a, as the trailing-edge stall angle. Clearly the determination 
of a, is the most important end-point of the present theory but equally it presents 
a numerical problem that is beyond our capabilities at  present. A rough estimate 
of its value can however be obtained as follows. 

We compute the position of separation on the assumption that f jT(x)  is 
exactly equal to - a( -x)*. This may be done on the same lines as in Riley & 
Stewartson (1969) and we find, from (5.11), that if x = x,, u = a, at this point 
then 

0.307 < < 0.364 (5.12) 

and that the probable value of cr, is near 0.326. We now set a, = 0 and determine 
the relative contribution of the third term of (5.1) to the pressure gradient at 
x = x,. If 

a( -x$ = 2 (5.13) 

this term is only about 20% of the first term and separation is unlikely to be 
inhibited. If 

a( -x$ = 0.45 (5.14) 

the pressure gradient has been reduced to zero at  x = x3 and separation is likely 
to have been inhibited. We infer that 

0-45 < ~ : / ( 0 . 3 2 6 ) ~  < 2, 

so that 0-33 < a, < 0.41. (5.15) 

With a Reynolds number of 108 the relation (4.2) in conjunction with (5.15) 
gives an angle of incidence of approximately 2' for the onset of separation. Since 
experimentally trailing-edge stall does not occur until the angle of incidence is 
much larger, between 5" and 15', this predicted angle is much too small. The 
discrepancy may in part be explained by the fact that the observed flow is 
probably turbulent. In  turbulent flow the displacement effect is greater than in 
laminar flow, the adverse pressure gradient is thereby decreased, and the 
boundary layer will remain attached at  the trailing edge of the aerofoil through 
increased angles of incidence. 

On the lower side of the plate the pressure variation due to the incidence is 
favourable so no separation takes place there for any a. The form of the expan- 
sions for El and for $5, are similar to (5.1) and (5.3) for the upper side of the plate, 
and the asymptotic structure of the skin friction may be obtained from (5.11) by 
changing the sign of u. 

Turning now to the immediate neighbourhood of the trailing edge of the plate 
we first note that the conventional boundary-layer equations, with main stream 
as given by (3.1) with a* < 0 and O(l),  have been integrated numerically by 
Ackerberg (private communication) who finds a complicated singularity a t  
x* = 0 with an infinite skin friction there. In  our case a* is small and the inter- 
action with the main stream is likely to keep the boundary-layer properties 
finite if a < a,. We may expect, however, that as x+ 0 - the values of a.ii,/az 
as z+ 0 & are different. We denote them by AT(a) and A,(a), and for reasons 
similar to those given in I they are expected to be finite with A, < 0 < A,. 

(b f  1x1 < 1 
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Further, in view of the previous history of the boundary layers on the top and 
bottom of the plate, they will satisfy, for a > 0, 

(AB(a)I ' IAB(O)1 = = AT(o)  > AT(a)) (5.16) 

where A, is defined in I ($6). As was the case there, the pressure and pressure 
gradient should be bounded as x+ 0 - , but as x+ 0 + the pressure gradient is 
O(x-9.) which is necessary to prevent p ( x )  from being singular at  x = 0 + . The 
transition of the solution from x = 0 - to x = 0 + is achieved by a generalization 
of the Rott & Hakkinen (1965) wake solution. We suppose that the velocity 
profile at x = 0- is 

i i i i , (O - , z )  = a,(z) with a ; ( O  + ) = A,, aL;(O - ) = A,, 

where a,(z) is to be computed, and also 

d@&lx is finite at x = 0 - , and dp,/dx M Cox-$ as X+ 0 t 

where C, is a constant to be found. Then, if, near z = 0, 

(X > 0), G,(X,Z) = &(&x); Gh(7) 

G,(q) satisfies G{ + 2G0 G," - Gh2 = 27C0 29, 

with boundary conditions 

G6(7)-18AT7+0 as q+m, 
G6(7)-18ABq+0 as ~ - + - c o .  

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

These conditions ensure that the velocity profile (5.19) matches with (5.17) as 
x+ 0 + . This could of course be achieved if finite constants replaced the zeros on 
the right-hand sides of (5.21), but the additional restriction that these constants 
must be zero is necessary to ensure that x,(x) and &(x) are bounded as x --f 0 + . 
A discussion of this point is made in I ($6)  for the special case A, = - A,, and the 
conclusions reached there are also applicable here. 

Solutions of equation (5.20) with boundary conditions (5.21) have been kindly 
obtained for the authors by M i  P. G. Williams for a range of values of the positive 
parameter - &/AB. The results are given in table 1, where q0 is defined to be the 
value of 7 at which Go vanishes. 

- & c / b  1 .o 0.8 0.6 0.4 0.2 0 

4% 0 0.017 0.040 0.070 0.109 0.164 
@&a)/@ 4.28 4.03 3.86 3.82 4.02 4-44 
Col G 0.409 0.351 0.287 0.213 0.124 0 

TABLE 1 
~ 

If A, < 0 the governing equation has no solutions since Go < 0 for large enough 
positive 7 and the method of solution completely breaks down in the neighbour- 
hood of x = 0. Part of the reason is no doubt connected with the change in the 
direction of propagation of small disturbances, but at the present stage of 
development of the theory any attempts to overcome the difficulty are bound 



Trailing-edge stall 575 

to be speculative especially in view of the singularity at separation, which has 
also to be dealt with, and so we shall not pursue the matter. 

Returning to the case AT > 0 we see that the streamline from the trailing edge 
is given by q = qo, so that it has a vertical tangent there, and in addition the 
streamwise component of velocity on it is proportional to x+. Its subsequent 
behaviour probably needs a complete numerical integration for elucidation but 
we note that as in the symmetrical problem, even if 42, and p2 are completely 
known, the form of G, downstream is not fully determinate and depends on an 
infinite set of arbitrary constants. The reason of course is that d(x) near x = 0 is 
not entirely dependent on the local values of P2(x), and in addition to the arbitrary 
constants mentioned in I ($6)  there will be others associated with 8(x) as 
introduced in (4.16). 

Finally, we consider the properties of the solution when x & 1. Here it seems 
that the Goldstein solution for the inner wake (Goldstein 1930) is appropriate 
together with the transformation (4.16). For large x we write 

G, = g(gx)+g;(v)+ ... , 

( c )  1x1 3 1, IL: > 0 

(5.22) 

the dots denoting terms which are smaller when x is large, and 

(5.23) 

Here go satisfies the same differential equation (5.20) as Go, except that Co = 0, 
together with boundary conditions 

go(0) = g:(O) = 0, g:(oO) = 18, (5.24) 

and 8(x) is defined by (4.18). Physically this means that the lower deck terminates 
in a wake which is similar to that for a symmetrically disposed plate except that 
it is displaced a distance 8(x) upwards due to the upwash of the inviscid flow 
behind the inclined plate. From the relation between q ( x )  and P2(x) and the 
property f jT  = jiB where x > 0 we have 

qX) = +m*+2aa,x4+..., (5.25) 

when xis large, which is in accord with the above physical description of the flow. 
The properties of the Goldstein inner wake imply that 

$[AT(x)-AB(x)] = 1*416($~)*+ ..., (5.26) 

which gives a pressure decaying like x d  as x + 03 as in the symmetrical situation. 
In  order to determine further terms in (5.25), (5.26) we set up an asymptotic 
series for G, in descending powers of x, and ultimately of logx also, whose 
coefficients are functions of 7, the leading term being given by (5.22). Were it 
not for the boundary conditions due to the asymmetry of the problem the 
structure of this series would be the same as that in I ($5) and so we shall con- 
centrate on the asymmetrical features which are in fact dominant. Of these the 
most important arises from the term u~(y) in (4.4a) which behaves like ly[Jsgny 
as y+O and which matches with (5.3) when x is large and negative. Since it is 
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independent of x it must match with the asymptotic series for 4, when x is large 
and positive. This can be achieved by taking the first two terms of the series for 
$2, as 

(5.27) 

where g1 satisfies (5.28) 

together with the boundary conditions 

(5.29) 

where d, is a constant which we now determine. The contribution to the asymp- 
totic expansions of both AT(,) and %(x) from the term in d, is 

(5.30) 

and we now obtain d, by noting that (5.30) in conjunction with (5.10) and the 
identical result for AB(x) gives a contribution to the pressure which must vanish 
for large positive x. Hence 

d, = 2*3%(-$)!. (5.31) 

The solution of (5.28) may now be obtained uniquely and we find after numerical 
integration that gl(0) = 10.0, g;(O) = 46.0. The consequent contribution to O(z) 
is O(x*) and is, as anticipated, smaller than both the terms in (5.25). Further 
terms in the expansion of El may be found if necessary, but we shall not pursue 
the matter beyond noting that it will involve an infinite set of arbitrary constants. 

6. An approximate solution for the antisymmetric part of the pressure 
At the end of $ 4  we outlined a possible procedure for the numerical solution of 

the fundamental problem presented by (4.13), (4.15), and in view of the con- 
siderable complexity of such a computation we feel it worthwhile to derive an 
approximate solution which would yield the antisymmetric part of the pressure 
and the symmetric part of the function A,(%). This is made possible by the fact 
that p,(x) = PB(x) in the wake so that the antisymmetric part of the pressure, 
& ( f j T - j 3 B ) ,  is zero for x > 0. Equations (4.13) become tractable if they are 
linearized about the shear flow with which Q,(x,z) merges at the outer edge of 
the lower deck. The resulting equation should yield a solution exhibiting the 
main properties of the flow if it is regarded as valid for x < 0 only, since it is not 
expected that the linear shear is a good first approximation in the wake. The 
method of Wiener and Hopf then enables the functions &(pT - PB), $(AT + AB) to 
be determined for all x, the former vanishing for x > 0, from a solution for the 
boundary layer over the plate which is independent of the boundary layer in 
the wake. 

Denoting by fi,(x,z), iiB(x7z) the values of E,(x,z) for z > 0 and z < 0 
respectively, we write 

$2,(x, 2) = + GT(x, z), f i B ( 2 ,  z )  = + GB(x, z), (6.1) 
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where 2 = 1x1, in the appropriate forms of (4.13), neglect the non-linear terms 
and subtract to obtain 

The fundamental equation, which is to be considered for x < 0 only, is then 
obtained from (6.2) as 

a2w a3w 2- - - adz - a 2 3  
(x < O),  

where w = B(GT - GB),  and is to be solved subject to the conditions 

a2w 
a22 = &(XI on z = 0 ;  W + * ( ~ ~ + A " ~ )  as Z+W. (6.4) 

Here &(x) = id($?, - pB)/dx,  and the boundary condition as 2 --f 00 follows from 
(4.15d). 

If the Fourier transform of w(x, 2) is denoted by W ( w ,  2)  so that 

then, since w(x, 2) satisfies (6.3) for x < 0, we have 

The function &+(w) is the Fourier transform of &(x), and the suffix plus indicates 
that it is a regular function of the complex variable w for Rew > 0 since we 
require that &(x) _= Ofor x > 0. The solution (6.6) satisfies the boundary condition 
on 2 = 0 for x < 0, and contains the additional function M-(w,Z) regular for 
Re w < 0 as the equation and boundary conditions satisfied by w(x, 2) for x > 0 
are unspecified. The parameter 6 is introduced for convenience and the limiting 
process 6-t 0 + will be made in conclusion. The branch of the cube root in (6.6) is 
to be chosen so that the argument of the Airy function has positive real part as 
Rew-t +m. 

A relationship between a+(@) and c ( w ) ,  which is defined to be the Fourier 
transform of +#(AT +AB)/dx2, is obtained from the upper deck. With an obvious 
extension of the notation of (4.7), (4.8) we have that in the upper deck 

a a 
- (P2T - -%?) = - ;iX (%!F + KT,') ( y 2 o), (6.7) 

and that PZT - PzB is harmonic in the variables x and Y.  Thus if Q2(w, Y )  is the 
Fourier transform of ia(P2T- PZB)/ax we obtain, using (4.9), 

aY 
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The factor A-4 is required since &(x) = A*pz(x, 0). If we now differentiate (6.7) 
with respect to x and let Y -+ 0 we deduce that 

1 a3  

a Y 2 ax3 aQz = h-*--(A,+&). 

Finally, combining (6.8), (6.9), we have 

- IwI &+(w) = iOC(O), (6.10) 

We are now in a position to apply the second of the boundary conditions (6.4). 

(6.11) -w2~(x ,Z )+C(o)  as Z+m, 

where C(w) is the transform of &l2(.& + AB)/dx2. 

It becomes 

so that, from (6.6), 

(6.12) 

The function c(o) may now be eliminated between (6.10) and (6.12), and, if 1 0 1  
is replaced by (w  - iS)* (w + is)$, the result of the elimination is 

Cj+(w) K+(w) = y e+(w - i 6 ) Q ~ - ( w )  ~ - ( w ) ,  (6.13) 

where (6.14) 

and 0 < y = - 3Ai’ (0) = 33/( - #)!. (6.15) 

Equation (6.13) has been written with the left-hand side regular for Rew > 0 
and the right-hand side regular for Re o < 0 on the assumption that the factoriza- 
tion (6.14) has been made. We now make the additional assumption, which may 
be justified aposteriori, that the region of regularity of the left-hand side of (6.13) 
may be extended to Re w > - 6, and that of the right-hand side to Re w < 6. The 
two sides are now equal and regular on a dense set of points, so, by analytic con- 
tinuation, together they define a function which is regular everywhere. Before 
proceeding further it is convenient to perform the factorization of K(w). 

The function K(w) is regular and non-zero in the w plane cut along the positive 
imaginary axis from i6 to ico, and along the negative imaginary axis from - is 
to -iw. The factorization is carried out in t’he usual way (see, for example, 
Noble 1958), and we obtain 

K’(w) 11 2y a* da + -. (6.16) -- 
K J w )  - 6(w-i6) 377’b/o (y2-3*ya%+&)(a+iw)’  

and (6.17) 

We shall require in particular the values of K-(w), K+(w) for w = - itya, w = isyt 
respectively where t, s are real and positive. They are 

(6.18) 
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and O0 d l o g ( a + s ) d v  K+(isyf) = - sB exp 

where the arbitrary multiplicative constant is chosen so that 

(6.19) 

(6.20) 

We are now in a position to return to (6.13). We set both sides equal to a 
constant D so that m eiwx 

Q(x) = 21 - dw. 
2~ -mK+(w)  

(6.21) 

Since K+(w) as given by (6.17) is regular and non-zero for Rew 2 0 and is 
asymptotic to w as IwI-too, we see that &(x)  = 0 for x > 0 as required. Once 
a+(@) is known 6 ( w )  is given by (6.10) and (aG/aZ)l,=, by (6.6). With the use of 
(6.14) where necessary the three Fourier transforms are inverted to give 

= o  if x > 0 1  

Here I ( t ) ,  J ( s )  are the integrals appearing in (6.18), (6.19): 

4 J 'X  vJlog(a+s) 
J ( s )  =- da 

377 0 l+d 

(6.25) 

(6.26) 

No expressionfor (aw/aZ)I,=;,for 2 > 0 is givenin (6.24) since the original equation 
(6.3) only determines w for x < 0. The constant D will be determined by the 
requirement (4.15f) which gives 

(-x)Bd(pT-@B)/dx+cx as x-+--oo. (6.27) 

In order to deduce the forms taken by (6.22)-(6.24) for large and small 1x1, we 
require the asymptotic expansions of I ( t ) ,  J ( s )  for small and large values oft, s. 
Since we find, from (6.25), (6.26), that 

I ( t )  - I( t -1)  = 8 log t ,  (6.28) J ( s )  - J(s-1) = + logs, 

we need only consider small values of the variables. The results are 

77 t4 t 2  t% 24 7r t4 

8 3t 2% 2 3 8 3n 
I ( t )  = 2!it cos- - - -- +--- t3sin +- (logt - i) + O(t5).  (6.29) 

n 2 4 s2 24 n 5 4  

8 34 24 3 8 3n 
J ( s )  = 24s cos- --ss +-- - -s3sin - - - (logs - 2) + O(s5). (6.30) 

37-2 
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We now determine the constant D by using (6.22), (6.27),  (6.29) and obtain 

S. N .  Brown and K .  Stewartson 

(6.31) 

The quantities 4($jT-$jB),  h(6,+AB) are obtained from (6.22)) (6.23) by 
integration. The arbitrary constant in the integration of (6 ,22)  is determined by 
the requirement that the pressure be continuous a t  x = 0. Of the four arbitrary 

- 4  0 4 
2 

FIGURE 1. The function O(s)/a. 

constants that arise from (6.23),  two are used to ensure that and 
&i!(AT+AB)/dx are also continuous a t  the trailing edge, while with one of the 
remaining two we require that @(A5, + 2 B ) l d x - t  0 as x -+ - co to  comply with 
(5.10). The fourth constant is presumably determined by the constant in the 
asymptotic expansion of HL(7) as 7 +a3 in (5 .3) ,  and is not at our disposal. How- 
ever, since a2HL(q) represents a non-linear contribution to  G, in (5 .3 )  and the 
solution of this section embodies only the linear features of the fundamental 
problem of the trailing edge, we shall not match these two constants. The function 
plotted in figure 1 is O(x)/a with the definition of (4.18) extended to x < 0. For 
x > 0, O(x) represents the deviation from the centre-line of the streamline that 
comes off the trailing edge of the plate. At x = 0, 8(x) = 0 and O'(z) is bounded, 
though O"(x) is logarithmically infinite. 

The resulting expressions for ( f j T  - f jB) /2a ,  (2a)-l {(aQ,/az), + (X i l /~z )B}z=o  are 
illustrated in figure 2. As for O(x), expansions were found for small and large 
values of 1x1, and the integrals were evaluated numerically for intermediate 
values of x. For large 1x1 the expansions follow easily from (6 .29) ,  (6.30) and we 
note the first few terms here in order to compare the results with the predictions 
Of $ 5 .  

If  x is large and negative the appropriate forms are 

cos - + -+ ( - x)-g + o( ( - x)-s) ( 4 - 4  77 ( -L)!  

29ys 8 6 b 3 ~  

&(AT+AB) = a{66( -4 ) !  (-z)h+0(1)}, (6.33) 
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and 

(6.34) 
while for x > 0 

1 (6.35) 
24x4 7.f 2% $(A,+&) = -a! # x " + c o s ~ - ~ ( - ~ ) ! x 1 + O ( l )  . ( Y$ 

X 

- 12 -8 -4 0 

- 
I1 

- 

- -3 

I I - 4  

FIGURE 2. I, The anti-symmetric pressure (j5, -p",)/2a; 11, The symmetric skin friction 

This linearized solution of the problem of the  trailing edge is consistent with, and 
gives confidence in, the structure set out in the preceding sections. Comparison 
of (6.32) with (5.1) gives an estimate of the previously unknown constant a, as 

a, = 2-gy-s ~ 0 ~ 4 7 . f  = 0.7898, (6.36) 

and then the two expressions are seen to agree except for the additional term 
O((-x) -%)  in (5.1). However, as this arises from the symmetric part of the 
pressure it is automatically excluded from (6.32). Similarly, we may compare 
(6.33) with (5.10)) and (6.34) with (5.3) and (5.8). Finally, we note the agreement 
between (6.34) and (5.25) and (5.31). 

The constant a, of which we have an estimate in (6.36) is related to the cireula- 
tion term B of (2.2) by (5.2), and the assumption of $ 3  that B = O(s3Z) is seen 
to be justified. Thus there is a stagnation point of the outer inviscid flow on the 
upper side of the plate a t  a distance from the trailing edge given by 

- x* / l  = s7a2f&2,h--a. (6.37) 
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7. Supersonic trailing edges 
It is of interest to compare and contrast the results for incompressible flow 

with those for supersonic flow. We suppose that the flat plate is fixed in a com- 
pressible fluid which has Mach number M, > 1 at an infinite distance upstream. 
Thus at the leading edge of the plate an expansion fan is formed on the upper side 
and a shock on the lower side. According to inviscid theory the slip velocity and 
pressure on the plate are given by 

(7.1) 
Ul(x*) = Um+U,a*sgny*I(M2,- 1)6, 

p* = pm - U: ,om a* sgn y*/(M$ - I)+. 

At the trailing edge a triple deck similar to that in incompressible flow is set up, 
the main difference arising from the inviscid-flow properties in the upper deck 
where the governing equation is the linear wave equation instead of the potential 
equation. The structure in fact is the same as that proposed by Stewartson & 
Williams (1969) for the closely related problem of self-induced separation and 
which is based on ideas introduced by Lighthill (1953). We write for y* > 0 in 

as in (5.11)-(5.15) of Stewartson & Williams (1969), where T, is the wall tem- 
perature, T, the temperature at infinity, and C is Chapman's constant which 
occurs in the linear viscosity law 

plpm = CTITm, C = p?J,T,/pu, T,, (7.3) 

discussed in Stewartson (1964, p. 35), for example, and ,u is the coefficient of 
viscosity. With these assumptions the fundamental boundary-layer equation for 
the region z > 0 is the same as (4.13). The boundary conditions in x < 0 are the 
same as in (4.14) the only difference being the relation between YT(x )  and AT(%). 
Instead of (4.15a) we now have 

the difference being due to  the change in structure of the upper deck and to the 
fact that on leaving the triple deck in the upstream direction AT tends to zero 
but &, is given by (7.1). Similar results hold for the lower deck with some sign 
changes analogous to (4.15) [e.g. f jT(x)  is replaced by - g B ( z )  in (7.4)]. 
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The form of the two lower decks in supersonic flow is quite different from that 
in incompressible flow because now there is no possibility of the solution at a 
particular station of x directly affecting what happens farther upstream. Instead, 
on both the top and bottom of the plate, there occurs a self-induced flow due to 
the non-uniqueness of the governing equation (4.13) when subject to the condi- 
tion (7.4). Some properties of this solution were discussed in Stewartson & 
Williams (1969) where it was shown that for a rising pressure the only disposable 
parameter is xo which fixes the position of separation. In the present problem, 
if a* = 0, we need the other solution in which the pressure falls as x increases so 
that the skin friction increases. At the trailing edge the skin friction is greater 
than that given by Blasius and is the same on the upper and lower sides of the 
plate. Just downstream of the trailing edge the Rott & Hakkinen (1965) simi- 
larity solution holds in the neighbourhood of the line z = 0 with pressure gradient 
proportional to x-*. Consequently AT(,) and @,(x) vary linearly as x+ 0 + but 
their second derivatives are singular. The formal solution is then continued by 
forward numerical integration and proceeds until, as x -+ co, the Goldstein wake 
is approached with pressure gradient proportional to 5-4. Presumably the dis- 
posable parameter in this solution that fixes the pressure at  x = 0 - is determined 
by the condition that @,(x) -+O as x-+co. 

When a* > 0 it is clear from (7.4) that the crucial parameter is a, where 

a* = €2C*h+(lM2, - l)*,,. (7.5) 

If a, < 1 the effect of the inclination of the plate to the main stream may be 
neglected in comparison with that due to the trailing edge. If a, = O ( l ) ,  then 
there are two disposable constants xT and xB fixing the self-induced solutions of 
(4.13) on top and on the bottom of the plate. On the lower side the pressure will 
fall, and the appropriate solution is the same as for the trailing edge of a sym- 
metrically disposed plate though xB =l xo. On the top the pressure depends on 
the value of a, and may fall or rise. The difference X, -xB is determined by the 
condition that g T ( 0 )  = FB(0). Thereafter the same procedure is used as when 
a, = 0 and xT is determined by the condition @,(a) = 0. If the pressure rises 
there is a possibility of separation on the upper side and once this occurs the 
development of the flow is not clear. Although the separation is not accompanied 
by a singularity as explained in Stewartson & Williams (1969, § 9), the equation 
of Rott & Hakkinen (1965) does not appear to have a solution when reversed 
flow has occurred on one side of the plate. A further point to note is that it  has 
not yet been determined what ultimately happens to the self-induced solution 
in which the pressure decreases with increasing x. It appears possible that 
p(x )  -+ - 00 as x -+ co but further numerical work is required before firm conclu- 
sions may be drawn. All we can confirm at the moment is that separation occurs 
when a*, the angle of incidence of the wing, is such that 

C(M2,-1) t 
a* N 

in contrast to the result a* = O ( R 4 )  in the incompressible case. 
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Finally we observe that, if the compressible flow is subsonic rather than super- 
sonic, the appropriate scaling in the triple deck is the same as (7.2) except that 
(M2, - 1) is replaced by (1 -M2,) .  In  addition, in (3.1), a* is replaced by 
a*/( 1 - M2,)a. The condition for separation then becomes 

We wish to  thank Dr R.C.Lock for a helpful discussion on the nature of 
separation. 
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